Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 42 results
1.

Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas.

green CcaS/CcaR P. putida
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3473-8_3 Link to full text
Abstract: Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.
2.

Nano-optogenetic CAR-T Cell Immunotherapy.

blue iLID Jurkat mouse in vivo
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3593-3_17 Link to full text
Abstract: Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.
3.

Multimodal Control of Bacterial Gene Expression by Red and Blue Light.

blue red DrBphP PAL E. coli Multichromatic
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3658-9_26 Link to full text
Abstract: By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.
4.

Using Optogenetics to Spatially Control Cortical Dynein Activity in Mitotic Human Cells.

blue iLID HCT116 HeLa
Methods Mol Biol, 2023 DOI: 10.1007/978-1-0716-2958-1_5 Link to full text
Abstract: Several light-inducible hetero-dimerization tools have been developed to spatiotemporally control subcellular localization and activity of target proteins or their downstream signaling. In contrast to other genetic technologies, such as CRISPR-mediated genome editing, these optogenetic tools can locally control protein localization on the second timescale. In addition, these tools can be used to understand the sufficiency of target proteins' function and manipulate downstream events. In this chapter, I will present methods for locally activating cytoplasmic dynein at the mitotic cell cortex in human cells, with a focus on how to generate knock-in cell lines and set up a microscope system.
5.

Application of Optogenetics to Probe the Signaling Dynamics of Cell Fate Decision-Making.

blue iLID D. melanogaster in vivo Signaling cascade control
Methods Mol Biol, 2023 DOI: 10.1007/978-1-0716-3008-2_14 Link to full text
Abstract: The development of optogenetic control over signaling pathways has provided a unique opportunity to decode the role of signaling dynamics in cell fate programing. Here I present a protocol for decoding cell fates through systematic interrogation with optogenetics and visualization of signaling with live biosensors. Specifically, this is written for Erk control of cell fates using the optoSOS system in mammalian cells or Drosophila embryos, though it is intended to be adapted to apply generally for several optogenetic tools, pathways, and model systems. This guide focuses on calibrating these tools, tricks of their use, and using them to interrogate features which program cell fates.
6.

Pyroptosis Induction and Visualization at the Single-Cell Level Using Optogenetics.

violet PhoCl HEK293
Methods Mol Biol, 2023 DOI: 10.1007/978-1-0716-3350-2_10 Link to full text
Abstract: Pyroptosis has been identified as a pro-inflammatory form of programmed cell death. It can be triggered by different stimuli including pathogen invasion or cell stress/danger signals releasing hundreds of proteins upon lysis that cause complex responses in neighboring cells. Pyroptosis is executed by the gasdermin (GSDM) family of proteins which, upon cleavage by caspases, form transmembrane pores that release cytokines to induce inflammation. However, despite the importance of gasdermins in the development of inflammatory diseases and cancer, a lot is still to be understood in the downstream consequences of this cell death pathway. Currently, conventional methods, such as drug treatments or chemically forced oligomerization, are limited in the spatiotemporal analysis of pyroptosis signaling in the cellular population, since all cells are primed for undergoing pyroptosis. Here, we provide a protocol for the application of a novel optogenetics tool called NLS_PhoCl_N-GSDMD_mCherry that enables precise temporal and spatial pyroptosis induction in a confocal microscopy setup, followed by imaging of the cell death process and subsequent quantitative analysis of the experiment. This tool opens new opportunities for the study of pyroptosis activation and of its effects on the bystander cell responses.
7.

Optogenetic Activation of Intracellular Nanobodies.

blue Magnets HeLa NIH/3T3
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2075-5_31 Link to full text
Abstract: Intracellular antibody fragments such as nanobodies and scFvs are powerful tools for imaging and for modulating and neutralizing endogenous target proteins. Optogenetically activated intracellular antibodies (optobodies) constitute a light-inducible system to directly control intrabody activities in cells, with greater spatial and temporal resolution than intracellular antibodies alone. Here, we describe optogenetic and microscopic methods to activate optobodies in cells using a confocal microscope and an automated fluorescence microscope. In the protocol, we use the examples of an optobody targeting green fluorescent protein and an optobody that inhibits the endogenous gelsolin protein.
8.

Optogenetic Methods to Control Tissue Mechanics in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2541-5_13 Link to full text
Abstract: Optogenetics is a powerful technique that allows the control of protein function with high spatiotemporal precision using light. Here, we describe the application of this method to control tissue mechanics during Drosophila embryonic development. We detail optogenetic protocols to either increase or decrease cell contractility and analyze the interplay between cell-cell interaction, tissue geometry, and force transmission during gastrulation.
9.

Optogenetic Control of Membrane Trafficking Using Light-Activated Reversible Inhibition by Assembly Trap of Intracellular Membranes (IM-LARIAT).

blue CRY2/CIB1 Cos-7
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2209-4_20 Link to full text
Abstract: Intracellular membrane trafficking is a dynamic and complex cellular process. To study membrane trafficking with a high spatiotemporal resolution, we present an optogenetic method based on a blue-light inducible oligomerization of Rab GTPases, termed light-activated reversible inhibition by assembly trap of intracellular membranes (IM-LARIAT). In this chapter, we focus on the optical disruption of the dynamics and functions of previously studied intracellular membrane trafficking events, including transferrin recycling and growth cone regulation in relation to specific Rab GTPases. To aid general application, we provide a detailed description of transfection, imaging with a confocal microscope, and analysis of data.
10.

Quantitative Analysis of Membrane Receptor Trafficking Manipulated by Optogenetic Tools.

blue CRY2/CIB1 HEK293 HEK293T Control of vesicular transport
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1258-3_2 Link to full text
Abstract: Membrane receptors play a crucial role in transmitting external signals inside cells. Signal molecule-bound receptors activate multiple downstream pathways, the dynamics of which are modulated by intracellular trafficking. A significant contribution of β-arrestin to intracellular trafficking has been suggested, but the underlying mechanism is poorly understood. Here, we describe a protocol for manipulating β-arrestin-regulated membrane receptor trafficking using photo-induced dimerization of cryptochrome-2 from Arabidopsis thaliana and its binding partner CIBN. Additionally, the protocol guides analytical methods to quantify the changes in localization and modification of membrane receptors during trafficking.
11.

Green Light-Controlled Gene Switch for Mammalian and Plant Cells.

green TtCBD HEK293
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_6 Link to full text
Abstract: The quest to engineer increasingly complex synthetic gene networks in mammalian and plant cells requires an ever-growing portfolio of orthogonal gene expression systems. To control gene expression, light is of particular interest due to high spatial and temporal resolution, ease of dosage and simplicity of administration, enabling increasingly sophisticated man-machine interfaces. However, the majority of applied optogenetic switches are crowded in the UVB, blue and red/far-red light parts of the optical spectrum, limiting the number of simultaneously applicable stimuli. This problem is even more pertinent in plant cells, in which UV-A/B, blue, and red light-responsive photoreceptors are already expressed endogenously. To alleviate these challenges, we developed a green light responsive gene switch, based on the light-sensitive bacterial transcription factor CarH from Thermus thermophilus and its cognate DNA operator sequence CarO. The switch is characterized by high reversibility, high transgene expression levels, and low leakiness, leading to up to 350-fold induction ratios in mammalian cells. In this chapter, we describe the essential steps to build functional components of the green light-regulated gene switch, followed by detailed protocols to quantify transgene expression over time in mammalian cells. In addition, we expand this protocol with a description of how the optogenetic switch can be implemented in protoplasts of A. thaliana.
12.

Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice.

red BphS HEK293
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_9 Link to full text
Abstract: With the development of mobile communication technology, smartphones have been used in point-of-care technologies (POCTs) as an important part of telemedicine. Using a multidisciplinary design principle coupling electrical engineering, software development, synthetic biology, and optogenetics, the investigators developed a smartphone-controlled semiautomatic theranostic system that regulates blood glucose homeostasis in diabetic mice in an ultraremote-control manner. The present chapter describes how the investigators tailor-designed the implant architecture "HydrogeLED," which is capable of coharboring a designer-cell-carrying alginate hydrogel and wirelessly powered far-red light LEDs. Using diabetes mellitus as a model disease, the in vivo expression of insulin or human glucagon-like peptide 1 (shGLP-1) from HydrogeLED implants could be controlled not only by pre-set ECNU-TeleMed programs, but also by a custom-engineered Bluetooth-active glucometer in a semiautomatic and glycemia-dependent manner. As a result, blood glucose homeostasis was semiautomatically maintained in diabetic mice through the smartphone-controlled semiautomatic theranostic system. By combining digital signals with optogenetically engineered cells, the present study provides a new method for the integrated diagnosis and treatment of diseases.
13.

Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells.

red BphS HEK293
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_8 Link to full text
Abstract: With the increasing indispensable role of smartphones in our daily lives, the mobile health care system coupled with embedded physical sensors and modern communication technologies make it an attractive technology for enabling the remote monitoring of an individual's health. Using a multidisciplinary design principle coupled with smart electronics, software, and optogenetics, the investigators constructed smartphone-controlled optogenetic switches to enable the ultraremote-control transgene expression. A custom-designed SmartController system was programmed to process wireless signals from smartphones, enabling the regulation of therapeutic outputs production by optically engineered cells via a far-red light (FRL)-responsive optogenetic interface. In the present study, the investigators describe the details of the protocols for constructing smartphone-controlled optogenetic switches, including the rational design of an FRL-triggered transgene expression circuit, the procedure for cell culture and transfection, the implementation of the smartphone-controlled far-red light-emitting diode (LED) module, and the reporter detection assay.
14.

Optical Control of Genome Editing by Photoactivatable Cas9.

blue Magnets HEK293T
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_13 Link to full text
Abstract: The CRISPR-Cas9 system offers targeted genome manipulation with simplicity. Combining the CRISPR-Cas9 with optogenetics technology, we have engineered photoactivatable Cas9 to precisely control the genome sequence in a spatiotemporal manner. Here we provide a detailed protocol for optogenetic genome editing experiments using photoactivatable Cas9, including that for the generation of guide RNA vectors, light-mediated Cas9 activation, and quantification of genome editing efficiency in mammalian cells.
15.

Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration.

blue CRY2/CIB1 MEF-1 Control of cytoskeleton / cell motility / cell shape
Methods Mol Biol, 20 Nov 2020 DOI: 10.1007/978-1-0716-0962-0_8 Link to full text
Abstract: Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
16.

Control of Cell Migration Using Optogenetics.

blue CRY2/CIB1 HeLa
Methods Mol Biol, 17 Sep 2020 DOI: 10.1007/978-1-0716-0779-4_29 Link to full text
Abstract: Optogenetics uses light to manipulate protein localization or activity from subcellular to supra-cellular level with unprecedented spatiotemporal resolution. We used it to control the activity of the Cdc42 Rho GTPase, a major regulator of actin polymerization and cell polarity. In this chapter, we describe how to trigger and guide cell migration using optogenetics as a way to mimic EMT in an artificial yet highly controllable fashion.
17.

Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch.

blue AsLOV2 EL222 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_11 Link to full text
Abstract: Optogenetic approaches facilitate the study of signaling and metabolic pathways in animal cell systems. In the past 10 years, a plethora of light-regulated switches for the targeted control over the induction of gene expression, subcellular localization of proteins, membrane receptor activity, and other cellular processes have been developed and successfully implemented. However, only a few tools have been engineered toward the quantitative and spatiotemporally resolved downregulation of proteins. Here we present a protocol for reversible and rapid blue light-induced reduction of protein levels in mammalian cells. By implementing a dual-regulated optogenetic switch (Blue-OFF), both repression of gene expression and degradation of the target protein are triggered simultaneously. We apply this system for the blue light-mediated control of programmed cell death. HEK293T cells are transfected with the proapoptotic proteins PUMA and BID integrated into the Blue-OFF system. Overexpression of these proteins leads to programmed cell death, which can be prevented by irradiation with blue light. This experimental approach is very straightforward, requires just simple hardware, and therefore can be easily implemented in state-of-the-art equipped mammalian cell culture labs. The system can be used for targeted cell signaling studies and biotechnological applications.
18.

Optogenetic Control of Gene Expression Using Cryptochrome 2 and a Light-Activated Degron.

blue CRY2/CIB1 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_10 Link to full text
Abstract: Optogenetic tools allow for use of light as an external input to control cellular processes. When applied to regulate the function of transcription factors, optogenetic approaches provide a tunable, reversible, and bidirectional method to control gene expression. Herein, we present a detailed method to induce gene expression in mammalian cells using the light dependent dimerization of cryptochrome 2 (CRY2) and CIB1 to complement a split transcription factor. We also describe a protocol to disrupt gene expression with light by fusing a dimeric transcription factor to CRY2. When combined with a light-induced degron attached to the gene product, this method allows for rapid modulation of target protein abundance.
19.

Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation.

blue bPAC (BlaC) HC-1
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_14 Link to full text
Abstract: cAMP is a crucial mediator of multiple cell signaling pathways. This cyclic nucleotide requires strict spatiotemporal control for effective function. Light-activated proteins have become a powerful tool to study signaling kinetics due to having quick on/off rates and minimal off-target effects. The photoactivated adenylyl cyclase from Beggiatoa (bPAC) produces cAMP rapidly upon stimulation with blue light. However, light delivery is not always feasible, especially in vivo. Hence, we created a luminescence-activated cyclase by fusing bPAC with nanoluciferase (nLuc) to allow chemical activation of cAMP activity. This dual-activated adenylyl cyclase can be stimulated using short bursts of light or long-term chemical activation with furimazine and other related luciferins. Together these can be used to mimic transient, chronic, and oscillating patterns of cAMP signaling. Moreover, when coupled to compartment-specific targeting domains, these reagents provide a new powerful tool for cAMP spatiotemporal dynamic studies. Here, we describe detailed methods for working with bPAC-nLuc in mammalian cells, stimulating cAMP production with light and luciferins, and measuring total cAMP accumulation.
20.

Synthesis of a Light-Controlled Phytochrome-Based Extracellular Matrix with Reversibly Adjustable Mechanical Properties.

red Cph1 in vitro
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_15 Link to full text
Abstract: Synthetic extracellular matrices with reversibly adjustable mechanical properties are essential for the investigation of how cells respond to dynamic mechanical cues as occurring in living organisms. One interesting approach to engineer dynamic biomaterials is the incorporation of photoreceptors from cyanobacteria or plants into polymer materials. Here, we give an overview of existing photoreceptor-based biomaterials and describe a detailed protocol for the synthesis of a phytochrome-based extracellular matrix (CyPhyGel). Using cell-compatible light in the red and far-red spectrum, the mechanical properties of this matrix can be adjusted in a fully reversible, wavelength-specific, and dose-dependent manner with high spatiotemporal control.
21.

Design and Application of Light-Regulated Receptor Tyrosine Kinases.

blue green red Cph1 MxCBD TtCBD VfAU1-LOV HEK293
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_16 Link to full text
Abstract: Understanding how the activity of membrane receptors and cellular signaling pathways shapes cell behavior is of fundamental interest in basic and applied research. Reengineering receptors to react to light instead of their cognate ligands allows for generating defined signaling inputs with high spatial and temporal precision and facilitates the dissection of complex signaling networks. Here, we describe fundamental considerations in the design of light-regulated receptor tyrosine kinases (Opto-RTKs) and appropriate control experiments. We also introduce methods for transient receptor expression in HEK293 cells, quantitative assessment of signaling activity in reporter gene assays, semiquantitative assessment of (in)activation time courses through Western blot (WB) analysis, and easy to implement light stimulation hardware.
22.

Engineering Optogenetic Protein Analogs.

blue LOV domains Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_7 Link to full text
Abstract: This chapter provides an overview of the technologies we have developed to control proteins with light. First, we focus on the LOV domain, a versatile building block with reversible photo-response, kinetics tunable through mutagenesis, and ready expression in a broad range of cells and animals. Incorporation of LOV into proteins produced a variety of approaches: simple steric block of the active site released when irradiation lengthened a linker (PA-GTPases), reversible release from sequestration at mitochondria (LOVTRAP), and Z-lock, a method in which a light-cleavable bridge is placed where it occludes the active site. The latter two methods make use of Zdk, small engineered proteins that bind selectively to the dark state of LOV. In order to control endogenous proteins, inhibitory peptides are embedded in the LOV domain where they are exposed only upon irradiation (PKA and MLCK inhibition). Similarly, controlled exposure of a nuclear localization sequence and nuclear export sequence is used to reversibly send proteins into the nucleus. Another avenue of engineering makes use of the heterodimerization of FKBP and FRB proteins, induced by the small molecule rapamycin. We control rapamycin with light or simply add it to target cells. Incorporation of fused FKBP-FRB into kinases, guanine exchange factors, or GTPases leads to rapamycin-induced protein activation. Kinases are engineered so that they can interact with only a specific substrate upon activation. Recombination of split proteins using rapamycin-induced conformational changes minimizes spontaneous reassembly. Finally, we explore the insertion of LOV or rapamycin-responsive domains into proteins such that light-induced conformational changes exert allosteric control of the active site. We hope these design ideas will inspire new applications and broaden our reach towards dynamic biological processes that unfold when studied in vivo.
23.

Optogenetic Control of Nucleocytoplasmic Protein Transport.

blue AsLOV2 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_8 Link to full text
Abstract: The transport of proteins between the nucleus and the cytosol is a vital process regulating cellular activity. The ability to spatiotemporally control the nucleocytoplasmic transport of a protein of interest allows for elucidating its function taking into account the dynamic and heterogeneous nature of biological processes contrary to conventional knockin, knockout, and chemically induced overexpression strategies. We recently developed two optogenetic tools, called LINuS and LEXY, for reversibly controlling with blue light the nuclear import and export of proteins of interest, respectively. Here we describe how to use them to control the localization of a protein of interest in cultured mammalian cells using a fluorescence microscope.
24.

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_2 Link to full text
Abstract: G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
25.

Light-Inducible CRISPR Labeling.

blue AsLOV2 U-2 OS
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_9 Link to full text
Abstract: CRISPR labeling is a powerful technique to study the chromatin architecture in live cells. In CRISPR labeling, a catalytically dead CRISPR-Cas9 mutant is employed as programmable DNA-binding domain to recruit fluorescent proteins to selected genomic loci. The fluorescently labeled loci can then be identified as fluorescent spots and tracked over time by microscopy. A limitation of this approach is the lack of temporal control of the labeling process itself: Cas9 binds to the g(uide)RNA-complementary target loci as soon as it is expressed. The decoration of the genome with Cas9 molecules will, however, interfere with gene regulation and-possibly-affect the genome architecture itself. The ability to switch on and off Cas9 DNA binding in CRISPR labeling experiments would thus be important to enable more precise interrogations of the chromatin spatial organization and dynamics and could further be used to study Cas9 DNA binding kinetics directly in living human cells.Here, we describe a detailed protocol for light-inducible CRISPR labeling. Our method employs CASANOVA, an engineered, optogenetic anti-CRISPR protein, which efficiently traps the Streptococcus pyogenes (Spy)Cas9 in the dark, but permits Cas9 DNA targeting upon illumination with blue light. Using telomeres as exemplary target loci, we detail the experimental steps required for inducible CRISPR labeling with CASANOVA. We also provide instructions on how to analyze the resulting microscopy data in a fully automated fashion.
Submit a new publication to our database